Intercentre reproducibility of second eigenvector orientation in cardiac diffusion tensor imaging

نویسندگان

  • Elizabeth M Tunnicliffe
  • Pedro Ferreira
  • Andrew D Scott
  • Rina Ariga
  • Laura-Ann McGill
  • Sonia Nielles-Vallespin
  • Stefan Neubauer
  • Dudley J Pennell
  • Matthew D Robson
  • David Firmin
چکیده

Background Diffusion tensor imaging enables the study of cardiac microstructure in vivo, including its changes through the cardiac cycle. The left ventricle consists of myocytes with opposing helical arrangements in the epiand endocardium. Histology shows that these myocytes are arranged into small laminar “sheetlet” structures, separated by shear layers which allow the sheetlets to move and reorient relative to each other during myocardial contraction. While the direction of the first eigenvector of the cardiac diffusion tensor indicates the average direction of the myocytes in a voxel, the second eigenvector appears to indicate the mean orientation of the sheetlets (1). Recent work has demonstrated that there are differences between the motion of these sheetlets between healthy volunteers and patients with hypertrophic cardiomyopathy (2). In order to facilitate comparison of sheetlet orientations in disease between different centres, the aim of this study was to test the intercentre reproducibility of the second eigenvector orientation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resolving Fine Cardiac Structures in Rats with High-Resolution Diffusion Tensor Imaging

Cardiac architecture is fundamental to cardiac function and can be assessed non-invasively with diffusion tensor imaging (DTI). Here, we aimed to overcome technical challenges in ex vivo DTI in order to extract fine anatomical details and to provide novel insights in the 3D structure of the heart. An integrated set of methods was implemented in ex vivo rat hearts, including dynamic receiver gai...

متن کامل

Differentiation of Edematous, Tumoral and Normal Areas of Brain Using Diffusion Tensor and Neurite Orientation Dispersion and Density Imaging

Background: Presurigical planning for glioma tumor resection and radiotherapy treatment require proper delineation of tumoral and peritumoral areas of brain. Diffusion tensor imaging (DTI) is the most common mathematical model applied for diffusion weighted MRI data. Neurite orientation dispersion and density imaging (NODDI) is another mathematical model for DWI data modeling.Objective: We stud...

متن کامل

Intercentre reproducibility of cardiac apparent diffusion coefficient and fractional anisotropy in healthy volunteers

BACKGROUND Diffusion tensor cardiac magnetic resonance (DT-CMR) enables probing of the microarchitecture of the myocardium, but the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) reported in healthy volunteers have been inconsistent. The aim of this study was to validate a stimulated-echo diffusion sequence using phantoms, and to assess the intercentre reproducibility of in...

متن کامل

Three-dimensional diffusion tensor microscopy of fixed mouse hearts.

The relative utility of 3D, microscopic resolution assessments of fixed mouse myocardial structure via diffusion tensor imaging is demonstrated in this study. Isotropic 100-microm resolution fiber orientation mapping within 5.5 degrees accuracy was achieved in 9.1 hr scan time. Preliminary characterization of the diffusion tensor primary eigenvector reveals a smooth and largely linear angular r...

متن کامل

Determination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter

Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2016